Skip to main content

Compound Systems And The Entangled State

 

The entanglement properties of qubits used in quantum computing are exploited. However, the state vector of qubits need not be entangled.

A composite system is formed by the tensor product of the sub-physical systems that compose it.

Let's consider two systems, A and B.
 
If there is a correlation between these A and B systems, we can write the tensor product of these systems as follows.

However, if there is no correlation between systems A and B, these systems are entangled and the above equation cannot be written.

For example,

Question: Can we write as |ψ> = |A>|B>?

The answer is no, we cannot write this equation. because,
However, we can write the tensor product expression in its most general form, whether it is entangled or not.
In this case, we can write the above tensor equation of |ψ> = |00> + |11>.




Comments

Post a Comment

Popular posts from this blog

Bloch Sphere – Geometric Representation of Quantum State

    It is very difficult to visualize quantum states before our eyes. The Bloch sphere represents quantum state functions quite well. The Bloch sphere is named after physicist Felix Bloch. As you can see in the Bloch sphere figure below, it geometrically shows the pure states of two-level quantum mechanical systems. The poles of the Bloch sphere consist of bits |0⟩ and |1⟩. Classically, the point on the sphere indicates either 0 or 1. However, from a quantum mechanics point of view, quantum bits contain possibilities to be found on the entire surface of the sphere. Traditionally, the z-axis represents the |0⟩ qubit, and the z-axis the |1⟩ qubit. When the wave function in superposition is measured, the state function collapses to one of the two poles no matter where it is on the sphere. The probability of collapsing into either pole depends on which pole the vector representing the qubit is closest to. The angle θ that the vector makes with the z-axis determines this probabilit...

Statement of Bell's Inequality

 One of the most important applications of quantum mechanics is Bell's inequality. In 1965, John Stewart Bell actually thought that Einstein might be right and tried to prove it, but proved that quantum logic violated classical logic. It was a revolutionary discovery. Let's look at its mathematically simple explanation. To create the analogy, let's first write a classical inequality.   This inequality above is a classic expression. The quantum analogy of this expression represents the Bell inequality. With just one difference. Bell's inequality shows that the above equation is violated. Expressing Bell's inequality by skipping some complicated mathematical intermediates; While there is no such situation in the classical world that will violate the inequality we mentioned at the beginning, it is difficult to find a situation that does not violate this inequality in the quantum world. Reference https://www.youtube.com/watch?v=lMyWl6Pq904 https://slideplay...

Bernstein–Vazirani Algorithm

  Quantum computers currently available are not sufficient to solve every existing classical problem due to their own characteristics. This does not mean that they are inferior to classical computers, or that, on the contrary, quantum computers should give all kinds of advantages over classical computers. Popular quantum algorithms solved in quantum computers are algorithms created by taking advantage of the superposition and entanglement properties of particles. So, they are algorithms created to show the prominent features of quantum properties. Today I will talk about an enjoyable algorithm that demonstrates the efficiency and speed of these quantum features. Known as the Bernstein - Vazirani algorithm is a quantum algorithm invented by Ethan Bernstein and Umesh Vazirani in 1992. The purpose of this algorithm, which is a game, is to find a desired number. To put it more clearly, let's keep in mind a string of binary numbers, for example, 1011001. Next, let's write an algori...