Skip to main content

Compound Systems And The Entangled State

 

The entanglement properties of qubits used in quantum computing are exploited. However, the state vector of qubits need not be entangled.

A composite system is formed by the tensor product of the sub-physical systems that compose it.

Let's consider two systems, A and B.
 
If there is a correlation between these A and B systems, we can write the tensor product of these systems as follows.

However, if there is no correlation between systems A and B, these systems are entangled and the above equation cannot be written.

For example,

Question: Can we write as |ψ> = |A>|B>?

The answer is no, we cannot write this equation. because,
However, we can write the tensor product expression in its most general form, whether it is entangled or not.
In this case, we can write the above tensor equation of |ψ> = |00> + |11>.




Comments

Post a Comment

Popular posts from this blog

Bloch Sphere – Geometric Representation of Quantum State

    It is very difficult to visualize quantum states before our eyes. The Bloch sphere represents quantum state functions quite well. The Bloch sphere is named after physicist Felix Bloch. As you can see in the Bloch sphere figure below, it geometrically shows the pure states of two-level quantum mechanical systems. The poles of the Bloch sphere consist of bits |0⟩ and |1⟩. Classically, the point on the sphere indicates either 0 or 1. However, from a quantum mechanics point of view, quantum bits contain possibilities to be found on the entire surface of the sphere. Traditionally, the z-axis represents the |0⟩ qubit, and the z-axis the |1⟩ qubit. When the wave function in superposition is measured, the state function collapses to one of the two poles no matter where it is on the sphere. The probability of collapsing into either pole depends on which pole the vector representing the qubit is closest to. The angle θ that the vector makes with the z-axis determines this probabilit...

Quantum Phase Estimation - Calculating an Eigenvalue

    We continue our series of fundamental and ongoing quantum algorithms. In today's post, we'll look at the eigenvalue calculation that is familiar to anyone in both the basic sciences and engineering. We will consider a slightly different situation, of course, our work is quantum. Let's consider the quantum state of a system! When we make an observation, we obtain real observation values by calculating the eigenvalues and eigenvectors of the state in that system, the mathematical calculation that helps us to have information about the position, momentum, or energy of that system. So, how can we find the eigenvalues of the unitary operators, which act on a system without changing its size, that is, preserve its physical size? To solve this problem, we will examine the Quantum Phase Estimation solution. In order to find the eigenvalues of the unit operator U, we need to find the value of the phase ϕ, which is inside the exponential value. However, it is not that easy. A qua...

Shor's Protocol - Example Solution

    Finally, we have come to the famous Shor's definition of the algorithm in this article. Before applying this algorithm, we examined in detail the three mathematical operations required for our algorithm. These three necessary mathematical expressions were modular arithmetics, quantum Fourier transform , and quantum phase estimation . As you may remember, Shor's algorithm is an algorithm that gives prime factor values of large numbers. To show that this protocol works, we will write an algorithm that gives the prime factors of 15. The binary equivalent of the decimal number 15 consists of 1111 qubits. Now let's examine Shor's protocol in detail. If we write it in a regular way, we can write the state vector | ψ 3 > as follows. Now, let's measure the last four qubits. In this case, we would have measured the situations |1>, |2>, |4>, |8> with 25% probability. Suppose we have reached the state |8> with a probability of 25% in our measurement re...