Skip to main content

Generating Entangled Photons On A Single Chip

 

Entangled photon pairs form the basis of quantum computers and information. The quantum properties of entangled photons allow us to transmit information faster and more efficiently.

However, in order to create this beautiful advantage, some technical problems need to be overcome. Chief among these technical challenges is generating the entangled photons that underpin everything about quantum computers.

Within our current technological capabilities, cumbersome lasers are needed to generate the desired amount of entangled photons and precise procedures for long-term alignment are required and their commercial viability is limited.

A research team at the Leibniz University of Hannover in Germany and the University of Twente in the Netherlands has succeeded in developing a new technology device that can overcome this fundamental problem. In their work, they developed a coin-sized chip that produces entangled photon pairs.

The manufactured chip consists of three main components: a laser; a filter that provides laser stability in a narrow frequency band; and a nonlinear medium that produces entangled photon pairs.

One of the main challenges of the experiment is that the materials used for lasering differ from those required for filtering and entangled pairing, and the manufacturing processes of the two materials are often incompatible.

They worked together with the team of Klaus Boller at the University of Twente to assemble these materials on the chip.

To solve this problem, the team used a technique called hybrid integration. Thus, they were able to combine incompatible materials. The gain medium used for lasering was made of indium phosphide, while the filtering and photon-generating components are made of silicon nitride. They also added an anti-reflective coating to prevent reflection on the interface.

Photons are constrained to travel in micron-wide waveguides printed on the chips.

This chip, which is produced in compact form, is expected to provide a great gain in terms of labor and cost for superconducting and confined atom or ion-based quantum computers, especially photonic-based quantum computers.

The team is now working to expand on-chip photonic capabilities to include the creation of multi-photon cluster states.

If you want to read more about the study, you can reach the article from the reference section.





Reference

Mahmudlu, H., Johanning, R., van Rees, A. et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photon. (2023). https://doi.org/10.1038/s41566-023-01193-1


Comments

Post a Comment

Popular posts from this blog

Bloch Sphere – Geometric Representation of Quantum State

    It is very difficult to visualize quantum states before our eyes. The Bloch sphere represents quantum state functions quite well. The Bloch sphere is named after physicist Felix Bloch. As you can see in the Bloch sphere figure below, it geometrically shows the pure states of two-level quantum mechanical systems. The poles of the Bloch sphere consist of bits |0⟩ and |1⟩. Classically, the point on the sphere indicates either 0 or 1. However, from a quantum mechanics point of view, quantum bits contain possibilities to be found on the entire surface of the sphere. Traditionally, the z-axis represents the |0⟩ qubit, and the z-axis the |1⟩ qubit. When the wave function in superposition is measured, the state function collapses to one of the two poles no matter where it is on the sphere. The probability of collapsing into either pole depends on which pole the vector representing the qubit is closest to. The angle θ that the vector makes with the z-axis determines this probabilit...

Bernstein–Vazirani Algorithm

  Quantum computers currently available are not sufficient to solve every existing classical problem due to their own characteristics. This does not mean that they are inferior to classical computers, or that, on the contrary, quantum computers should give all kinds of advantages over classical computers. Popular quantum algorithms solved in quantum computers are algorithms created by taking advantage of the superposition and entanglement properties of particles. So, they are algorithms created to show the prominent features of quantum properties. Today I will talk about an enjoyable algorithm that demonstrates the efficiency and speed of these quantum features. Known as the Bernstein - Vazirani algorithm is a quantum algorithm invented by Ethan Bernstein and Umesh Vazirani in 1992. The purpose of this algorithm, which is a game, is to find a desired number. To put it more clearly, let's keep in mind a string of binary numbers, for example, 1011001. Next, let's write an algori...

Shor's Protocol - Example Solution

    Finally, we have come to the famous Shor's definition of the algorithm in this article. Before applying this algorithm, we examined in detail the three mathematical operations required for our algorithm. These three necessary mathematical expressions were modular arithmetics, quantum Fourier transform , and quantum phase estimation . As you may remember, Shor's algorithm is an algorithm that gives prime factor values of large numbers. To show that this protocol works, we will write an algorithm that gives the prime factors of 15. The binary equivalent of the decimal number 15 consists of 1111 qubits. Now let's examine Shor's protocol in detail. If we write it in a regular way, we can write the state vector | ψ 3 > as follows. Now, let's measure the last four qubits. In this case, we would have measured the situations |1>, |2>, |4>, |8> with 25% probability. Suppose we have reached the state |8> with a probability of 25% in our measurement re...